Mirror symmetry for two-parameter models (I)

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mirror Symmetry for Two Parameter Models – I *

We study, by means of mirror symmetry, the quantum geometry of the Kähler-class parameters of a number of Calabi–Yau manifolds that have b11 = 2. Our main interest lies in the structure of the moduli space and in the loci corresponding to singular models. This structure is considerably richer when there are two parameters than in the various one-parameter models that have been studied hitherto....

متن کامل

Mirror Symmetry for Two Parameter Models – II *

We describe in detail the space of the two Kähler parameters of the Calabi–Yau manifold IP4 [18] by exploiting mirror symmetry. The large complex structure limit of the mirror, which corresponds to the classical large radius limit, is found by studying the monodromy of the periods about the discriminant locus, the boundary of the moduli space corresponding to singular Calabi–Yau manifolds. A sy...

متن کامل

Mirror symmetry for the Kazama-Suzuki models

We study the N = 2 coset models in their formulation as supersymmetric gauged Wess-Zumino-Witten models. A model based on the coset G/H is invariant under a symmetry group isomorphic to ZZk+Q, where k is the level of the model and Q is the dual Address after September 1, 1994: Department of Physics, Yale University, New Haven, CT 06511 Coxeter number of G. Using a duality-like relationship, we ...

متن کامل

Partial mirror symmetry I: reflection monoids

This is the first of a series of papers in which we initiate and develop the theory of reflection monoids, motivated by the theory of reflection groups. The main results identify a number of important inverse semigroups as reflection monoids, introduce new examples, and determine their orders. Introduction The symmetric group Sn comes in many guises: as the permutation group of the set {1, . . ...

متن کامل

Homological mirror symmetry on noncommutative two-tori

Homological mirror symmetry is a conjecture that a category constructed in the A-model and a category constructed in the B-model are equivalent in some sense. We construct a cyclic differential graded (DG) category of holomorphic vector bundles on noncommutative twotori as a category in the B-model side. We define the corresponding Fukaya’s category in the A-model side, and prove the equivalenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nuclear Physics B

سال: 1994

ISSN: 0550-3213

DOI: 10.1016/0550-3213(94)90322-0